Academia Brasileira De Ciencias

Enhancing Water Management Capacity in a Changing World. Sao Paulo June 25-28

Lake Chivero: Case study of urban water supply Issues and possibilities

C.H.D. Magadza

University of Zimbabwe Magadza.christopherhd@gmail.com

In a nutshell

- The Harare Municipality supplies water to close to 7 million people, i.e close to 50% of current Zimbabwe population.
- The Waterworks can only supply 60% of demand.
- 20% of produced water is lost through leakages
- 40% of consumption is paid for; i.e. 32% of production
- Lake Chivero, supplemented from Lake Manyame, is principal source of water.

Google earth view of L. Chivero watershed with overlays

HARARECIT

Marimba R

L. Chivero

11.8 km

lon

30.977635*

917075*

Pointer

Mukavisi R 🦂

Cleveland

Dam

Harahwa Dam

Manyame R

elev 1413 m

Seke Dam

Image © 2007 DigitalGlobe © 2007 Europa Technologies Chitungwiza City Seke Communal

Eye all 42.84 km

Streaming |||||||||| 100%

Table 1. Hydrological and morphometric features of Lake

Chive Chive Chive	vero cal la cala la cal
Full supply volume	250 x 10 ⁶ m ³
Full supply surface area	26.30 km ²
Catchment area	2227 km ²
Shoreline length	74 km
Maximum depth	27.43 m
Mean depth	9.4 m
Maximum breadth	8.0 km
Mean breadth	1.68 km
Length	15.7 km
Catchment : lake area ratio	8.9
Shoreline development	4.1
Year construction	1952

Paintings by the Xan people

Hydrology

Runoff, Manyame River

Fig 4. Standardised annual runoff; Manyame River, with six yr moving average

Year

Flushing times

Comparative run-off flow and wastewater flow into L. Chivero

Fig 6. Proportionate flows of sewage bearing streams and Manyame runoff

Fig.7. % contribution of sewage to lake volume from Ferle & Croborough sewage works

Projected changes in precipitation in L. Chivero catchment

Reconstructed Harare population: doubling period ~12 years

Population x 1000

Diffuse source

Breached sewer effluent flowing along suburban road in a middle to high income area

Dog on uncollected refuse heap

The facilities

Untreated wastewater outflow from a sewage treatment plant, Harare

Table. 2. Waste water treatment capacity (ML ^d) at some of the Manyame watershed sewage works (excluding Chitungwiza, Ruwa and Norton)								
Plant	Trickle filter	Year	Activated sludge (BNR)	Year	Ponds	Year	Total capacity	Present flow
Ferle	36	1960	18	1982		0	144	250
	000		18	1974		1200		1200000
	0000	Carl	72	1998	0		100 C	12000
Crowborough	36	1957	18	1982		0.00	54	120
Donnybrook	COLA			Sec.	2.3	1953	2.3	10
						- 1972		
Marlborough				1000	2	Post	2	7
- Carlos	$-\Omega_{\mu}$	001	0	an al	Teres	1980	$\overline{\Omega}$	A A A
Chitunwiza	0.00	0.00	0.000	0.0	0.00	1000	1.0 0.1	54
Total							202.3	387
Capacity deficit						441		

Pressures on the Water supply Reservoirs

Table 4 Historical trend in P loading to Lake Chivero. (Magadza 2003, Nyumbu 2012).

Variable	1967	1978	1996	2010
	the second se			A 2778

P concentration	2.8	0.13	1.8 (Manyame)	2.77
(mg/l)	27.4	1.5	14	27.8
P load g (m ²)		10		00000

697

P load (tonnes/pa) 685.0 39.6 350.0

Table 2. Phosphorus and Nitrogen export through surface runoff from Harare suburbs. Dry season; after Mufaro 2002

		Phosphorus Nitrogen		1.00	Total export			
Catchment/ Suburb	Туре	Tonne km- ²	Kg Capita ⁻¹	Tonne km- ²	Kg Capita ⁻¹	Ratio P: N	P- tonne	N- Tonne
Gwebi	Low	0.02	0.04	0.16	0.42	5.81	0.99	9.31
Muwisindale	Low	0.07	2.31	1.22	41.39	5.99	5.24	93.96
Kuwadzana	Medium	0.08	0.17	0.47	0.96	3.89	2.88	16.75
Mukuvisi	High/ Industria I High/ Industria	10.28	1.00	39.98	3.89	3.61	98.99	385.04
Marimba	1.00	0.13	0.77	0.00	4.90	3.00	9.20	00.31
Budiriro	High	2.30	0.23	13.77	1.35	9.42	22.08	132.17
Epworth	High	3.38	1.11	12.20	4.00	17.95	103.12	371.88
Glenview	High	0.30	0.39	1.09	1.44	6.50	30.23	111.39
Total or mean	7.6 am ⁻²	1.62	0.56	7.53	6.38	5.69	272.81	1180.81

Conditions in Lake Chivero

Fig 7. Annual mean phosphate: 2010 data after Nyumbu (2012), 1988 - 1994 Harare Minucipality, other data by author.

Lake Chivero from Dam wall

Macrophytes in eutrophic waters: warmer climate promotes faster growth, therefore higher management costs

Algal scum, Chivero (Photo C.H.D. Magadza)

Methane bubbles from the sediments: L. Chivero

Health issues

Enteric diseases deaths

Fig 7. Enteritis deaths per thosant infectd

Fig. 8. Liver cancer: incidence/1000. This disease is associated with microcystin from cynobacteria

Unexplored health hazards

- Health hazards associated with chlorinating water with high dissolved organic content
- Heavy metals
- Other industrial pollutants.
- Parasites

Remedies??

Technology solution

- The 1970 innovative use of BNR technology proved that it was a feasible method of eutrophication control
- The infrastructure and technical know-how is still available
- It however needs extensive investment to rehabilitate increase its capacity
- Plans for expansion of these sewage works have been completed

Secchi disc chneges following restoration measures (data from Thornton 1982, Ndebele and Magadza 2006, Magadza unpublished. The 2003 data refer to wet period.)

Google earth view: Ferle BNR sewage works. Green colour of reactors and clarifiers indicate dysfunctional state.

Ecological approach

Diffuse source pollution control.

Cleveland dam: 1913

Fig. Recovery of Mukuvisi stream from acid pollution

Distance from Cleveland Dam (Km)

Wetlands distribution in Lake Chivero watershed: total estimated area = 40 000 ha (After Nyumbu 2012)

Time projections of lake response to three waste-water management scenarios: Top: Business as usual. Middle: BNR technology; Bottom BNR +wetlands.

Historical, current and projected phosphorus loading on Lake Chivero

Parameter	1967	1978	1996	2010	2020 (Projections)
P concentration (mg/l) P load gm ⁻²	2.8 27.4	0.13 1.5	1.8 14	2.77 22.56	0.22
P load (tonnes/pa)	685.0	39.6	350.0	564	34.1

CONCLUSION

Harare water supply issues

- 1. Declining runoff
- 2. Growing urban population: communal lands issues
- 3. Wastewater returns to supply reservoirs
- 4. Large diffuse source pollution component
- 5. Insufficient wastewater treatment capacity
- 6. An economic meltdown leading to dysfunctional wastewater treatment facilities

Results:

- 1. Hypereutrophication
- 2. High costs of potable water production
- 3. Inability to meet water demand
- Consequences
- 1. Disease outbreaks
- 2. Water shortage in cities

Restoration strategy

1. The ILEC Integrated Lake Basin Management strategy.

The ILBM platform

Thank you for listening to us on Wetlands day

